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Abstract
Symmetry preserving difference schemes approximating second- and third-
order ordinary differential equations are presented. They have the same three-
or four-dimensional symmetry groups as the original differential equations.
The new difference schemes are tested as numerical methods. The obtained
numerical solutions are shown to be much more accurate than those obtained
by standard methods without an increase in cost. For an example involving a
solution with a singularity in the integration region, the symmetry preserving
scheme, contrary to standard ones, provides solutions valid beyond the singular
point.

PACS numbers: 02.20.Sv, 02.30.Hq, 02.60.Cb, 02.70.Bf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The purpose of this paper is to present some new difference schemes having the same Lie
point symmetry groups as the ordinary differential equations they approximate. We test these
schemes as numerical methods and compare them with standard schemes.

This is part of a general program, the aim of which is to turn Lie group theory into an
efficient tool for solving difference equations. Continuous symmetries of discrete equations
have been intensively studied during the last 20 years or so.

For recent reviews containing extensive lists of references to the original papers, see
[1, 2]. In this paper we restrict ourselves to one specific aspect of this approach, the symmetry
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preserving discretization of ordinary difference equations and its applications in numerical
analysis.

To present the basic ideas, let us first consider an ordinary differential equation (ODE)

E ≡ y(n) − F(x, y, y ′, . . . , y(n−1)) = 0. (1)

Its Lie point symmetry group G consists of all local point transformations of the form

x̃ = �λ(x, y), ỹ = �λ(x, y) (2)

taking solutions y(x) into solutions ỹ(x̃) of the same equation (λ represents group parameters).
The Lie algebra L of the symmetry group G is realized by vector fields of the form

X = ξ(x, y)∂x + φ(x, y)∂y. (3)

The algorithm for finding the symmetry algebra L and the symmetry group G for a given ODE
(1) goes back to S Lie and is given in many books on the subject [3]. It consists of solving the
determining equations resulting from the infinitesimal invariance requirement

pr(n) X(E)|E=0 = 0, (4)

where pr(n) X is the nth order prolongation of the vector field X (acting on derivatives up to
order n) [3].

Let us now consider an ordinary difference scheme (O�S), approximating the ODE (1).
The scheme will consist of two equations relating the values of (x, y) in N different points,
with N � n + 1

Ea(n, xn+K, . . . , xn+L, yn+K, . . . yn+L) = 0, a = 1, 2, L − K = N − 1. (5)

In the continuous limit one equation, say E1, goes into the ODE (1), the other reduces to an
identity (like 0 = 0). The two equations (5) should be such that if N − 1 values (xk, yk)

are given we can calculate the Nth one. This is assured, e.g., by imposing a condition on the
Jacobian:

∂(E1, E2)

∂(xn+L, yn+L)
�= 0. (6)

We wish to construct an O�S that not only approximates equation (1), but has the same
Lie point symmetry group G. This is achieved by constructing the scheme out of difference
invariants of the group G, or out of invariant manifolds. These are found using the vector
fields (3), corresponding to the invariance algebra of the ODE (1). The vector fields are the
same as in the continuous case; however, they must be prolonged to all points of the lattice,
involved in the system (5). We have

pr X =
L∑

j=K

{ξ(xn+j , yn+j )∂xn+j + φ(xn+j , yn+j )∂yn+j }. (7)

The invariants satisfy

pr XaI (xn+j , yn+j ) = 0, a = 1, . . . M, (8)

where {X1, . . . , XM} is a basis of the algebra L. The invariant manifolds satisfy the same
equation, but only on a subspace where the matrix of coefficients


ξ1,n+K, . . . , ξ1,n+L, φ1,n+K, . . . , φ1,n+L

...

ξM,n+K, . . . , ξM,n+L, φM,n+K, . . . , φM,n+L




is of lower rank.
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The fact that difference schemes can be invariant under continuous Lie point
transformations that act on the equations and on lattices was pointed out by Dorodnitsyn
[2, 4]. This approach has been used to classify and solve three-point difference schemes [5, 6].
It has been shown that symmetry preserving discretizations of first-order ODEs are exact, i.e.
the solutions of the ODEs and the invariant O�S coincide exactly [7]. The complementary
problem, in which an O�S is given and we wish to find its Lie point symmetries, was solved
in [8].

In section 2 we discretize a second-order nonlinear ODE with a three-dimensional solvable
symmetry algebra. Section 3 is devoted to a discretization of several third-order nonlinear
ODEs with three- or four-dimensional solvable symmetry algebras. Equations invariant
under the simple group SL(2, R) or the reductive one GL(2, R) are discretized in section 4.
The invariant difference schemes obtained are tested in section 5. They are shown to be
considerably more accurate then the corresponding standard schemes. Moreover, in the study
of a singular solution the invariant schemes turn out to have a qualitative advantage: they
make it possible to integrate numerically beyond the singularity.

2. Example 1: a second-order ODE invariant under a solvable Lie group

Let us consider the second-order ODE

x2y ′′ + 4xy ′ + 2y = (2xy + x2y ′)(k−2)/(k−1), k �= 0, 1
2 , 1, 2. (9)

Its symmetry algebra has a basis given by

X1 = ∂

∂x
− 2y

x

∂

∂y
, X2 = 1

x2

∂

∂y
, X3 = x

∂

∂x
+ (k − 2)y

∂

∂y
(10)

(for k = 0, 1
2 and 2 the symmetry algebra is larger and the equation is linear or linearizable).

Equation (9) could be simplified by a transformation taking the algebra (10) into its standard
form, but we are interested in discretizing it without prior simplifications.

We note that the general solution of (9) is

y(x) =
(

1

k − 1

)k−1 1

kx2
(x − x0) +

y0

x
, (11)

where x0 and y0 are integration constants.
Now let us derive an O�S approximating the ODE (9), invariant under the Lie group

generated by (10). We consider three points on a line xn−1, xn, xn+1 and the corresponding
values yk = y(xk). The invariance condition

pr XF(xn−1, xn, xn+1, yn−1, yn, yn+1) = 0, (12)

with pr X as in equation (7), yields three elementary invariants:

ξ1 = xn+1 − xn

xn − xn−1
, ξ2 = x2

n+1yn+1 − x2
nyn

(xn+1 − xn)k
, ξ3 = x2

nyn − x2
n−1yn−1

(xn − xn−1)k
. (13)

We put hn+1 = xn+1 −xn, hn = xn −xn−1 and expand yn±1 = y(xn±1) into Taylor series about
x = xn. We obtain

2ξ1

ξ1 + 1

(
ξ2 − 1

(ξ1)k−1
ξ3

)
= (hn+1)

2−k

{
(x2y ′′ + 4xy ′ + 2y)

+
1

3
(hn+1 − hn)(x

2y ′′′ + 6xy ′′ + 6y ′) + 0(ε2)

}
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1

2

[
ξ2 +

1

(ξ1)k−1
ξ3

](k−2)/(k−1)

= (hn+1)
2−k(x2y ′ + 2xy)(k−2)/(k−1)

×
{

1 +
k − 2

k − 1
(hn+1 − hn)

x2y ′′ + 4xy ′ + 2y

x2y ′ + 2xy
+ O(ε2)

}
(14)

where we assume that hn+1 and hn are of order ε, with ε a small parameter which goes to zero
in the continuous limit.

We see that the two equations

2ξ1

ξ1 + 1

(
ξ2 − 1

(ξ1)k−1
ξ3

)
= 1

2

[
ξ2 +

1

(ξ1)k−1
ξ3

](k−2)/(k−1)

, (15)

ξ1 = K, (16)

with K = const., provide an invariant O�S approximating equation (9). In general this is a
first-order approximation (of order ε). If we choose K = 1 in (16), the first-order terms drop
out and we obtain a second-order scheme (and a uniform lattice).

3. Examples of third-order ODEs invariant under solvable Lie groups

3.1. General comments

A third-order ODE can have a Lie point symmetry group of dimension dimL = N, 0 � N � 7.
The maximal dimension N = 7 occurs only for linear equations that can be transformed into
y ′′′ = 0 by a point transformation [3, 10]. We shall consider examples of equations with
N = 3 and N = 4.

In order to approximate a third-order ODE we must consider at least four points in a
stencil. We denote the points

(xn+k, yn+k), −1 � k � 2, (17)

and put

hn+2 = xn+2 − xn+1, hn+1 = xn+1 − xn, hn = xn − xn−1. (18)

In the continuous limit we put

hn+j = αjε, j = 0, 1, 2 (19)

where αj are constants of the order of 1 (not necessarily all equal).

3.2. Example 2: an ODE invariant under the similitude group of a Euclidean plane

Let us consider the four-dimensional Lie algebra

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = y

∂

∂x
− x

∂

∂y
, X4 = x

∂

∂x
+ y

∂

∂y
, (20)

generating translations, rotations and dilations in the (x, y) plane, respectively. The
Euclidean algebra {X1, X2, X3} allows two independent differential invariants in the space
{x, y, y ′, y ′′, y ′′′}

I1 = y ′′

(1 + y ′2)3/2
, I2 = (1 + y ′2)y ′′′ − 3y ′y ′′2

(1 + y ′2)3
(21)
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and the invariant ODE is

I2 = F(I1), (22)

where F(z) is an arbitrary function.
Invariance under dilations corresponding to X4 implies F(z) = Kz2 and the invariant

ODE is

(1 + y ′2)y ′′′ − 3y ′y ′′2 = Ky ′′2 (23)

where K is a constant. The general solution of equation (23) can be given in implicit form as

y(x) =
∫ x

0
u(t) dt + C3, x = C1

∫ u

0

e−K arctan s

(1 + s2)3/2
ds + C2, (24)

where C1, C2 and C3 are constants.
The Euclidean Lie group corresponding to {X1, X2, X3} allows five functionally

independent difference invariants in the space with local coordinates (17). We choose the
following basis for the invariants:

ξ1 = hn+2

[
1 +

(
yn+2 − yn+1

hn+2

)2]1/2

,

ξ2 = hn+1

[
1 +

(
yn+1 − yn

hn+1

)2]1/2

,

ξ3 = hn

[
1 +

(
yn − yn−1

hn

)2]1/2

,

ξ4 = (yn+2 − yn+1)hn+1 − (yn+1 − yn)hn+2,

ξ5 = (yn+1 − yn)hn − (yn − yn−1)hn+1.

(25)

From these we can form invariants that approximate the differential invariants I1 and I2 of
equation (21). To see this we expand yn+2 = y(xn + hn+1 + hn+2), yn+1 = y(xn + hn+1) and
yn−1 = y(xn − hn) into Taylor series about xn and obtain

J2 = 6

ξ1 + ξ2 + ξ3

(
ξ4

ξ1ξ2(ξ1 + ξ2)
− ξ5

ξ2ξ3(ξ2 + ξ3)

)

= 1

(1 + y ′2)3

{
[(1 + y ′2)y ′′′ − 3y ′y ′′2]

+

(
hn+2 + 2hn+1 − hn

4

)
[(1 + y ′2)yiv − 10y ′y ′′y ′′′ + 15y ′2y ′′3]

− 3

8

y ′′′3

1 + y ′2
2h2

n+2 + 7hn+2hn+1 + 4h2
n+1 + hn+1hn − 2h2

n

(hn+2 + hn+1 + hn)

}
(26)

J1 = 2αξ4

ξ1ξ2(ξ1 + ξ2)
+

2βξ5

(ξ2ξ3)(ξ2 + ξ3)

= 1

(1 + y ′2)3/2

{
y ′′ +

1

3(1 + y ′2)
[(1 + y ′2)y ′′′ − 3y ′y ′′2]

× [α(hn+2 + 2hn+1) + β(hn+1 − hn]

}
,

α + β = 1. (27)
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An invariant O�S approximating equation (22) is given by

J2 = F(J1) (28)

on the lattice

Aξ1 + Bξ2 + Cξ3 = 0, (29)

where A,B and C are constants.
In particular the ODE (23) invariant under the similitude group Sim(2) is approximated

by

J2 = KJ 2
1 (30)

on the lattice (29) which is also invariant under Sim(2).
Other invariant lattices can be formed out of the invariants (25), for instance in

subsection 5.3 we choose

ξ1

ξ2
= ξ2

ξ3
. (31)

Generally speaking, (29) and (30) (or (31)) provide a first-order approximation (of order
ε if hn+2, hn+1 and hn are of order ε). For a special value of K we can cancel first-order terms
in ε and obtain a second-order approximation, namely

K =
√

3
2 , α = β = 1

2 , C = −A, B = 2A.

3.3. Example 3: equations invariant under a Euclidean Lie group

Let us consider a different realization of the Euclidean and similitude Lie algebras, namely

X1 = ∂

∂y
, X2 = x

∂

∂y
, X3 = (1 + x2)

∂

∂x
+ xy

∂

∂y
, X4 = y

∂

∂y
. (32)

This algebra is isomorphic to (20) but cannot be transformed into it by a transformation of
variables. The Euclidean Lie group corresponding to {X1, X2, X3} allows two independent
differential invariants of order 3 or less. We choose them to be

I1 = (1 + x2)3/2y ′′, I2 = [(1 + x2)y ′′′ + 3xy ′′](1 + x2)3/2.

The invariant third-order ODE is

I2 = F(I1) (34)

where F(z) is an arbitrary function. If we also require invariance under the dilations generated
by X4, we obtain F(z) = Az and the equation is a linear one.

The five functionally independent difference invariants in the space (17) allowed by the
Euclidean group generated by {X1, X2, X3} are

ξ1 = (
1 + x2

n

)1/2

[
yn+1 − yn

xn+1 − xn

− yn − yn−1

xn − xn−1

]
,

ξ2 = (
1 + x2

n+1

)1/2

[
yn+2 − yn+1

xn+2 − xn+1
− yn+1 − yn

xn+1 − xn

]
, (35)

ξ3 = xn − xn−1

1 + xnxn−1
, ξ4 = xn+1 − xn

1 + xnxn+1
, ξ5 = xn+2 − xn+1

1 + xn+1xn+2
.
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Expanding into Taylor series about the point x ≡ xn, we find

2ξ1

ξ3 + ξ4
= (1 + x2)3/2

[
y ′′ +

hn+1 − hn

3

(
y ′′′ +

3xn

1 + x2
n

y ′′
)

+ O(ε2)

]
,

2ξ2

ξ4 + ξ5
= (1 + x2)3/2

[
y ′′ +

hn+2 + 2hn+1

3

(
y ′′′ +

3xn

1 + x2
n

y ′′
)

+ O(ε2)

]
.

(36)

We have assumed that hn, hn+1 and hn+2 are all of order ε (but not necessarily equal).
From equation (36) we obtain

J1 = 2αξ1

ξ3 + ξ4
+

2βξ2

ξ4 + ξ5
= (1 + x2)3/2y ′′ + O(ε), α + β = 1,

J2 = 6

ξ3 + ξ4 + ξ5

(
ξ2

ξ4 + ξ5
− ξ1

ξ3 + ξ4

)

= (1 + x2)3/2[(1 + x2)y ′′′ + 3xy ′′] + O(ε). (37)

Thus an invariant 0�S approximating equation (34) is given by

J2 = F(J1), aξ3 + bξ4 + cξ5 = 0 (38)

where a, b and c are constants. In general, this will be a first-order scheme. For certain
functions F, the scheme can be improved to a second-order one by an appropriate choice of
the constants α, β, a, b and c. We shall not go into that here.

4. Third-order equations invariant under SL(2, R)

Four inequivalent realizations of sl(2, R) as subalgebras of diff(2, R) exist [5, 11]. We shall
consider two of them here.

4.1. Example 4: first sl(2, R) algebra

The first sl(2, R) algebra S1 is given by

X1 = ∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = 2xy

∂

∂x
+ y2 ∂

∂y
. (39)

It allows one second-order and one third-order differential invariant:

I1 = 2xy ′′ + y ′

y ′3
, I2 = x2(y ′y ′′′ − 3y ′′2)

y ′5 . (40)

The most general invariant third-order ODE is hence

I2 = F(I1), (41)

where F(z) is an arbitrary function. The algebra (39) can be extended to gl(2, R) by adding
the operator

X4 = x
∂

∂x
. (42)

Requiring invariance under the corresponding GL(2, R) group restricts F(z) to F(z) = Az3/2

and we obtain the ODE

x2(y ′y ′′′ − 3y ′′2) = Ay ′1/2(2xy ′′ + y ′)3/2. (43)
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Five independent SL(2, R) difference invariants are

ξ1 = 1√
xn+1xn+2

(yn+2 − yn+1), ξ2 = 1√
xnxn+1

(yn+1 − yn),

ξ3 = 1√
xn−1xn

(yn − yn−1), ξ4 = 1√
xnxn+2

(yn+2 − yn),

ξ5 = 1√
xn+1xn−1

(yn+1 − yn−1).

(44)

From these we form

J2 = 12
(ξ4 − ξ1 − ξ2)(ξ2 + ξ3)ξ3 − (ξ5 − ξ2 − ξ3)ξ1(ξ1 + ξ2)

ξ1ξ2ξ3(ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ2 + ξ3)

= x2(y ′y ′′′ − 3y ′′2)
y ′5 + εφ, (45)

J1 = 8

[
α

ξ4 − ξ1 − ξ2

ξ1ξ2(ξ1 + ξ2)
+ (1 − α)

ξ5 − ξ2 − ξ3

ξ2ξ3(ξ2 + ξ3)

]

= 2xy ′′ + y ′

y ′3 +
2

3
[α(h++ + 2h+) + (1 − α)(h+ − h)]

x(y ′y ′′′ − 3y ′′2

y ′4 + ε2ψ, (46)

where φ and ψ are some functions of x, y ′, y ′′, y ′′′ and yiv and 0 � α � 1 is a constant.
An invariant scheme approximating equation (41) is given by

J2 = F(J1), (47)

Aξ1 + Bξ2 + Cξ3 + Dξ4 + Eξ5 = 0, (48)

where A, . . . , E are constants. To lowest orders (48) yields

{Ahn+2 + Bhn+1 + Chn + D(hn+1 + hn+2) + E(hn+1 + hn)}y
′

x
+

{
A(hn+2 + 2hn+1)hn+1

+ Bh2
n − Ch2

n−1 + D(hn+1 + hn+2)
2 + E

(
h2

n+1 − h2
n

)}xy ′′ − y ′

2x2
= 0. (49)

In general, the scheme is a first-order one, i.e. all hj go to zero like hj = ajε, then the error in
(47), (48) goes to zero like ε1. For specific functions F(z) the accuracy can be improved by
an appropriate choice of the constants α and A, . . . , E.

4.2. Example 5: second sl(2, R) algebra

The second sl(2, R) algebra S2 has a basis given by

X1 = ∂

∂y
, X2 = y

∂

∂y
, X3 = y2 ∂

∂y
. (50)

It can be embedded into the algebra sl(2, R) ⊕ sl(2, R) by adding

X4 = ∂

∂x
, X5 = x

∂

∂x
, X6 = x2 ∂

∂x
. (51)

The Lie group SL(2, R) generated by S2 has two differential invariants in the considered space,
namely

I1 = 1

y ′2

(
y ′y ′′′ − 3

2
y ′′2

)
, I2 = x. (52)
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The invariant ODE is

1

y ′2

(
y ′y ′′′ − 3

2
y ′′2

)
= F(x). (53)

Requiring invariance under the GL(2, R) group that includes X4 in its Lie algebra reduces
(53) to

1

y ′2

(
y ′y ′′′ − 3

2
y ′′2

)
= K, (54)

where K is a constant.
A larger invariance group is obtained only for K = 0. In this case the equation is invariant

under SL(2, R) ⊗ SL(2, R), generated by (50) and (51).
The difference invariants corresponding to the algebra (50) are

R = (yn+2 − yn)(yn+1 − yn−1)

(yn+2 − yn+1)(yn − yn−1)
, x, hn+2, hn+1, hn. (55)

We have

J1 = 6hn+2hn

hn+1(hn+1 + hn+2)(hn + hn+1)(hn+2 + hn+1 + hn)

[
(hn+2 + hn+1)(hn+1 + hn)

hnhn+1
− R

]

= 1

y ′2

[
y ′y ′′′ − 3

2
y ′′2

]
+ O(ε). (56)

An invariant O�S approximating equation (53) is

J1 = F(xn, hn, hn+1, hn+2), φ(xn, hn, hn+1, hn+2) = 0 (57)

with

F(xn, 0, 0, 0) = F(x), (58)

φ(xn, 0, 0, 0) = 0. (59)

If we require invariance under the group corresponding to {X1, X2, X3, X4} we must take
F(x) = K and the lattice will depend only on hn+2, hn+1 and hn. For instance, we can take
the lattice to be given by

αhn+2 + βhn+1 + γ hn = 0, (60)

and the constants α, β, γ can be chosen to improve the approximation.
An O�S invariant under SL(2, R)⊗SL(2, R) that approximates equation (54) for K = 0

is
(xn+2 − xn)(xn+1 − xn−1)

(xn+2 − xn+1)(xn − xn−1)
− (yn+2 − yn)(yn+1 − yn−1)

(yn+2 − yn+1)(yn − yn−1)
= 0, (61)

(xn+2 − xn)

(xn+2 − xn+1)

(xn+1 − xn−1)

(xn − xn−1)
= K0. (62)

For K0 = 4, this scheme is an exact one. Indeed, the equation

y ′y ′′′ − 3
2y ′′2 = 0 (63)

has two families of solutions

y = 1

ax + b
+ c and y = αx + β (64)
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where a, b, c, α and β are integration constants. Equation (62) with K0 = 0 has two families
of solutions

xn = 1

an + b
+ c, xn = αn + β. (65)

On the lattice (65) functions (64) solve (61) exactly.
In this example the underlying Lie group SL(2, R) plays a specially prominent role. The

group is the group of projective transformations of the real line (the variable y). Its invariant
I1 is the Schwarzian derivative of the variable y. Projective transformations can be used to
transform any three points on the projective line into any other three chosen points. Given
four points, e.g. yn−1, yn, yn+1, yn+2, we can form precisely one projective invariant out of
them, namely the anharmonic ratio R of (55). The variables xn, hn+2, hn+1, hn in (55) are also
invariants since the considered SL(2, R) group acts on the y space only. We can call (53) a
Schwarzian ODE. Then (57) is a Schwarzian O�S. Schwarzian derivatives play a prominent
role in the theory of integrable systems [16] and of dynamical systems [17, 18].

5. Numerical results

5.1. General procedure for testing the numerical schemes

This section reports on the numerical experiments performed using the schemes described in
the previous sections. The schemes are used to compute the solution for initial value problems
on a given interval. Before describing the results for each of the four classes of symmetries
analysed in this paper, we first describe some general procedures to implement and test the
various methods.

5.1.1. Reference solution. For test-problems for which an analytical solution is not available,
a very accurate and reliable reference solution is computed numerically and used to assess
the performance of the point symmetry preserving scheme. This is done using Matlab’s
standard adaptive Runge–Kutta scheme ODE45, with a very strict tolerance on the error set
at tol = 10−9. The first step is to convert the nth order equation (1) for y(x) into a system of
n first-order ODEs for u1(x) = y(x), u2(x) = y ′(x), . . . , un(x) = y(n−1)(x). Then equation
(1) becomes the system

u′
1 = u2, u′

2 = u3, . . . , u′
n = F(x, u1, u2, . . . , un). (66)

Given initial conditions u1(x0), u2(x0), . . . , un(x0), one then proceeds to compute the solution
on the interval [x0, xF ], where the scheme adaptively selects the local integration step so that
its local error estimates satisfies the imposed tolerance. Those very high order, very accurate
(and very costly numerically) solutions are used to generate start-up values as well as error
estimations for the point symmetry preserving schemes as described next.

5.1.2. Start-up values. The symmetry preserving schemes require a number of start-up
values (y0 = y(x0), y1 = y(x1) for the second-order case; also y2 = y(x2) for the third-order
cases). For given initial values y(x0), y

′(x0), (and y ′′(x0) for the third-order case), the start-up
value y0 = y(x0) is directly available, while the values for y1 and y2 are obtained as the
numerical reference solution (obtained as described above) at the nodes x1 and x2.

5.1.3. Error analysis. Given the discrete mesh xn, n = 0, 1, 2, . . . , N and corresponding
solution yn generated by the point-symmetry preserving scheme, the corresponding errors are
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obtained by comparing yn with yref(xn). Although the user has no direct input on the actual
mesh used by the Matlab’s solver, it is possible for the user to request specific output points for
the discrete solutions, so that given xn, one can obtain a very reliable numerical approximation
yref(xn), accurate with the prescribed tolerance.

5.1.4. Equivalent standard schemes. To better assess the new schemes proposed here, their
performance for various test-cases is compared with that of the standard finite difference
schemes that uses the same number of grid points xs,n, n = 0, 1, 2, . . . , N . Although
the point-symmetry preserving scheme finite mesh is typically non-uniform, for simplicity,
the standard mesh is assumed to be, so that xs,n = x0 + nh with h = (xF − x0)/N . The
discrete standard scheme is obtained using the following standard procedure (given here
for the third-order case, easily adapted for the second-order case). Given the four points
(xs,n−1, ys,n−1), (xs,n, ys,n), (xs,n+1, ys,n+1), (xs,n+2, ys,n+2),

(i) obtain the interpolating polynomial P3(x) through the four given points,
(ii) evaluate analytically P ′

3(xs,n+1/2), P
′′
3 (xs,n+1/2), P

′′′
3 (xs,n+1/2), which gives

P ′
3(xs,n+1/2) = 1

24h
(27(ys,n+1 − ys,n) − (ys,n+2 − ys,n−1)) (67)

P ′′
3 (xs,n+1/2) = 1

2h2
(ys,n+2 − (ys,n+1 + ys,n) + ys,n−1) (68)

P ′′′
3 (xs,n+1/2) = 1

h3
(ys,n+2 − 3ys,n+1 + 3ys,n − ys,n−1) (69)

(iii) substitute those expressions in the equation being discretized, evaluated at x = xs,n+1/2.

5.2. Numerical experiments for example 1 (second-order ODE (9))

Selecting k = 3 in equation (9) gives

x2y ′′ + 4xy ′ + 2y = (2xy + x2y ′)1/2 (70)

to be solved for x in the interval [1, 3], with the initial conditions chosen as y(1) =
13/12, y ′(1) = −1. The problem has an exact solution: yref(x) = x/12 + 1/x2.

The symmetry preserving scheme (15), (16) is used with the special choice K = 1, so
that the mesh is uniform and the discrete scheme is given by

x2
n+1yn+1 − 2x2

nyn + x2
n−1yn−1 = (

1
2

)1/2
h3/2(x2

n+1yn+1 − x2
n−1yn−1

)1/2
(71)

with xn = x0 + nh.
The start-up values are given by y0 = y(x = 1) = 13/12 and y1 = y(x = 1 + h) =

(1 + h)/12 + 1/(1 + h)2. The corresponding standard discrete scheme is given by

(ys,n+1 − 2ys,n + ys,n−1)x
2
s,n + 2xs,nh(ys,n+1 − ys,n−1) + 2h2ys,n

= h2

(
2xs,nys,n + x2

s,n

ys,n+1 − ys,n−1

2h

)1/2

. (72)

Note that both the symmetry preserving scheme and the standard scheme lead to a
nonlinear problem to compute yn+1, given yn and yn−1. Those algebraic nonlinear problems
are solved using a standard fixed point iteration until convergence.

Using the exact solution as reference, errors are computed for the numerical solutions
using each of the two schemes, with mesh sizes h = 0.1, 0.01, 0.001. Those errors are
reported in table 1.
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Figure 1. Discretization errors for the symmetry preserving scheme and the standard scheme
(example 1).

Table 1. Discretization errors (example 1).

Scheme h = 0.1 h = 0.01 h = 0.001

Symmetry preserving 6.04 × 10−4 7.26 × 10−6 7.39 × 10−8

Standard 4.72 × 10−3 7.54 × 10−5 7.86 × 10−7

One observes from table 1 that both schemes are second-order accurate, as the error is
roughly divided by a factor 100 whenever the mesh size is divided by 10. Also, the errors from
the symmetry preserving schemes are smaller by a factor of 10 compared to the errors obtained
with the standard scheme with the same mesh size. This is achieved without any additional
computational cost, both schemes having the same computational complexity. Figure 1 shows
the error as a function of x for both schemes for mesh size h = 0.1. The gain from using the
symmetry preserving scheme is obvious.

5.3. Numerical experiments for example 2 (third-order ODE (23))

The test-case consists in solving equation (23) for K = 1, with x in the interval [0, 10] and
with initial values y(0) = 0, y ′(0) = −10, y ′′(0) = 1. The lattice equation is chosen in the
form (31), i.e.

ξ1

ξ2
= ξ2

ξ3
= γ. (73)

Start-up values for x0 = 0, x1 = h0, x2 = 2h0 are generated for a given h0 using the
Matlab solver (see subsection 5.1). The constant γ in (73) is then computed using the start-up
points (x0, y0), (x1, y1) and (x2, y2).

Given the three points (xn−1, yn−1), (xn, yn), (xn+1, yn+1), the new point (xn+2, yn+2) is
obtained as the solution of the nonlinear system consisting of equations (30) (with K = 1) and
(73). In the present set of experiments, the values α = β = 1

2 were selected. The resulting
problem for (xn+2, yn+2) is nonlinear, in particular the mesh xn is non-uniform and completely
coupled with the solution yn.
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Figure 2. Discretization errors for the symmetry preserving scheme and the standard scheme
(example 2, h = 1).

Table 2. Discretization errors (example 2).

h = 1 h = 0.1 h = 0.01
Scheme (N = 14) (N = 130) (N = 1297)

Symmetry preserving 2.14 × 10−5 2.98 × 10−7 6.45 × 10−9

Standard 4.20 × 10−2 5.83 × 10−4 6.01 × 10−6

The standard scheme is obtained by substituting the expressions in (67)–(69) in (23). It
also leads to a nonlinear problem for yn+2, but for that scheme, the mesh xn is assumed to be
uniform and certainly completely decoupled from the solution yn.

Table 2 reports the numerical errors corresponding to various values for h0 to start up the
symmetry preserving schemes, h0 = 1, 0.1, 0.01, which lead to respectively 14, 130 and 1297
mesh nodes. The solutions with the standard schemes were computed on uniform meshes
with the same number of nodes.

Both schemes appear to be effectively second-order accurate, with the error in the
symmetry preserving scheme smaller by a factor 1000. The discretization errors with both
schemes are shown in figure 2.

5.4. Numerical experiments for example 3 (third-order ODE (34))

The test-case consists of solving equation (34) for the special choice F(I1) = I 2
1 , which leads

to the equation

(1 + x2)y ′′′ + 3xy ′′ = y ′′2(1 + x2)3/2. (74)

The solution is sought for x in the interval [0, L], with L to be selected below. The start-up
values (x0 = 0, y0 = y(x0)), (x1 = h0, y1 = y(x1)), (x2 = 2h0, y2 = y(x2)) are obtained
as before using an over-resolved numerical integrator. The procedure to generate the mesh
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Table 3. Discretization errors (example 3, case with blow-up).

Scheme h0 = 0.1 h0 = 0.01 h0 = 0.001

Symmetry preserving 8.82 × 10−2 9.88 × 10−3 3.93 × 10−4

Standard 7.03 × 10−1 1.10 × 10−1 1.68 × 10−3

Table 4. Discretization errors (example 3, case without blow-up).

Scheme h0 = 0.1 h0 = 0.01 h0 = 0.001

Symmetry preserving 1.53 × 10−3 1.62 × 10−5 2.63 × 10−6

Standard 1.44 × 10−1 9.65 × 10−3 1.18 × 10−4

xn, n = 0, 1, 2, . . . , N , and the corresponding discrete solution yn is as follows:

• Step 1. Using the invariant equation (38), one generates the complete mesh (for this
particular case, it is independent of yn). The constants in equation (38) are taken as
a = 1, b = −γ, c = 0 leading to

ξ3

ξ4
= ξ4

ξ5
= γ. (75)

The strategy to select γ and compute the corresponding mesh is the same as the one used
for example 2 (see discussion above).

• Step 2. Given the mesh xn, solve the invariant equation (38) for yn+2 given
(xn−1, yn−1), (xn, yn), (xn+1, yn+1) and xn+2.

Noting that I2 = (1 + x2)(1/2)dI1/dx, the equation being solved can be rewritten as
(1 + x2)dI1/dx = I 2

1 . The solution for I1(x) is therefore given by

1

I1
= 1

I1,0
− arctan(x) (76)

where I1,0 = I1(x0 = 0). This shows that y ′′(x) will blow up if x = tan(1/I1,0). We assess
the performance of the scheme for two cases, one with blow-up and one without.

5.4.1. Blow-up case. The integration is performed for x in the interval [0, 11.2] with blow-up
set up to occur at xb = 11.25. This is achieved by imposing y ′′(0) = 1/ arctan(xb). Three
values for the initial h0 are selected to be h0 = 0.1, 0.01, 0.001, which lead to meshes with
respectively N = 18, 151, 1484 nodes. Table 3 reports the errors at xF = 11.2. Both the
symmetry preserving and the standard schemes appear to be of order 1, with the errors from
the symmetry preserving schemes significantly smaller.

Figure 3 shows the behaviour of the discretization errors for both schemes, for the case
h0 = 0.01.

5.4.2. No blow-up case. This time, we select y ′′(0) = −1/ arctan(xb), so that blow-up
will not occur for x > 0. The numerical experiments are repeated with this new initial value.
Table 4 presents the errors at xF for various values of h0, the conclusions are the same as for the
blow-up case: both schemes appear to be first-order accurate, with the symmetry preserving
scheme much more accurate.

Figure 4 illustrates this behaviour for h0 = 0.01.
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Figure 3. Discretization errors for the symmetry preserving scheme and the standard scheme
(example 3, for the case with blow-up).
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Figure 4. Discretization errors for the symmetry preserving scheme and the standard scheme
(example 3, for the case without blow-up).

5.5. Numerical experiments for example 4 (third-order ODE (43))

The test-case consists of solving equation (43) with A = −1, i.e. the difference equation

J2 = −J
3/2
1 (77)

on the lattice given by

ξ1

ξ2
= γ, (78)
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Figure 5. Discretization errors for the symmetry preserving scheme and the standard scheme
(example 4).

Table 5. Discretization errors (example 4).

h = 0.02 h = 0.01 h = 0.005
Scheme (N = 149) (N = 288) (N = 567)

Symmetry preserving 2.67 × 10−4 6.62 × 10−5 1.65 × 10−5

Standard 1.47 × 10−3 5.59 × 10−4 1.78 × 10−4

with J2, J1 as in (45) and (46) and ξi as in (44). The solution is sought for x in the interval
[1, 16] with initial conditions y(1) = 0, y ′(1) = 0.1, y ′′(1) = 0.1. The start-up values
(x0 = 1, y0 = y(x0)), (x1 = 1 + h0, y1 = y(x1)), (x2 = 1 + 2h0, y2 = y(x2)) are computed
as in the other cases. Given the three points (xn−1, yn−1), (xn, yn), (xn+1, yn+1), the next point
(xn+2, yn+2) is obtained as the solution of the nonlinear system corresponding to the two
symmetry preserving discrete equations (77) and (78). The constant γ in (78) is computed
based on the three start-up values. Table 5 contains the errors with the symmetry preserving
scheme and the standard scheme for this example, corresponding to various initial mesh sizes
h0 = 0.2, 0.01, 0.005.

According to the results in table 5, both schemes are second-order accurate, with a much
smaller error for the symmetry preserving scheme. Figure 5 represents the discretization error
behaviour for h0 = 0.04.

5.6. Numerical experiments for example 5 (third-order ODE (53))

Numerical experiments are conducted with equation (53) for the case F(x) = sin(x):

1

y ′2

(
y ′y ′′′ − 3

2
y ′′2

)
= sin(x). (79)
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Table 6. Discretization errors (example 5).

Scheme h = 0.1 h = 0.01 h = 0.001

Symmetry preserving 3.10 × 10−2 3.13 × 10−4 2.96 × 10−6

Standard 5.07 × 10−3 5.01 × 10−5 6.70 × 10−7

The solution is sought for x in the interval [0, 2] (also [0, 6]) with initial conditions
y(1) = 0, y ′(1) = −10, y ′′(1) = 1. A uniform mesh is used here, it is compatible with the
difference invariants in (57). With hn = hn+1 = hn+2 = h corresponding to the uniform mesh,
the other invariant difference equation in (57) becomes

R = 4

(
1 − h2

2
F(xn, h)

)
(80)

with R defined in (55) as R = (yn+2 − yn)(yn+1 − yn−1)/((yn+2 − yn+1)(yn − yn−1)) and
where we select F(xn, h) = F(xn + h/2) to achieve second-order accuracy. This leads to the
following explicit expression for yn+2:

yn+2 = (yn+1 − yn−1)yn − K(yn − yn−1)yn+1

(yn+1 − yn−1) − K(yn − yn−1)
(81)

where K = 4
(
1 − h2

2 F(xn + h/2)
)
. This explicit expression for yn+2 is remarkably simple.

On the other hand, the standard scheme for the same problem is nonlinear. Substituting
the finite difference approximations for y ′, y ′′, y ′′′ in (67)–(69) in the ODE (79) leads to a
nonlinear equation for yn+2 to be solved iteratively.

First, we compare the discretization errors using the invariant scheme and the standard
scheme on the interval [0, 2] on which the solution is smooth. Table 6 reports those errors
in terms of the mesh size h. Both schemes display a second-order convergence rate. The
standard scheme has errors which are smaller by a factor of 6, but in terms of computational
efforts, the invariant scheme is much more efficient, as it gives an explicit formula for yn+2

unlike the standard scheme that requires a nonlinear iterative solver at each step. However,
if the integration interval is [0, 6], remarkably different conclusions are obtained. The
solution develops a singularity around x = 3. At that point, both the standard scheme
and the adaptive Runge–Kutta solver from Matlab fail to converge. On the other hand,
the invariant scheme integrates right through the singularity. The solution obtained with the
three schemes (reference, standard, invariant) is displayed in figure 6 for the coarse resolution
h = 0.1. In figure 7, the solution is shown with the invariant scheme for three resolutions
h = 0.1, 0.01, 0.001. To better observe the behaviour of the solution near the singularity, the
plot uses a log scale, and the absolute value of the solution is shown. Excellent numerical
convergence is observed, with the solutions corresponding to the three resolutions matching
very closely each other (of course, the singularity is better captured by the finest mesh).

The most striking feature shown in figures 6 and 7 is that the symmetry preserving
difference scheme provides a numerical solution u(x) for the entire region 0 � x � 6, x �= x0,
even though the solution has a pole at x0 close to 3. This strongly confirms our philosophy,
namely that the symmetry properties of an equation determine many of the global properties
of its solution. A similar phenomenon was observed in a previous study of a specific type
of first-order systems of ODEs, namely matrix Riccati equations [19, 20]. Matrix Riccati
equations allow a ‘nonlinear superposition formula’ [20], i.e. the general solution can be
expressed algebraically in terms of a finite number of particular solutions. The superposition
formula is based on a nonlinear action of the group SL(N, R) with N = 2 for the Riccati
equation itself. A numerical method based on this group theoretical superposition formula also
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Figure 7. Absolute value of the solution with the symmetry preserving scheme, h =
0.1, 0.01, 0.001 (example 5, on [0, 6]).

made it possible to integrate around the poles of solutions [19] and to approach the poles from
both sides. A further relevant observation is that matrix Riccati equations can be discretized
while preserving their superposition formulae [21, 22]. This discretization leads to fractional
linear mappings similar in form to equation (81)

6. Conclusions

The basic motivation for this research program is that symmetries of a physical problem are
an essential feature of the problem and should be incorporated in any mathematical model.



Difference schemes with point symmetries and their numerical tests 6895

In continuous descriptions, based on differential equations, this is taken for granted. In discrete
descriptions, using difference equations, continuous symmetries are usually lost. It has been
shown earlier [1, 2, 4–9] that it is possible to construct difference schemes that possess the
same symmetries as their continuous limits. To achieve this, it is necessary to use difference
schemes (equations and meshes) constructed out of the invariants of the corresponding Lie
groups.

In this paper, we have considered second- and third-order ordinary differential equations
with three- or four-dimensional symmetry groups. Our numerical experiments have shown
that the accuracy of the symmetry preserving schemes is much better (sometimes three orders
of magnitude better) than that of standard schemes at no significant additional cost. Example
5 has also shown that symmetry preserving schemes can also provide solutions when standard
methods fail because of singularities.

Imposing that symmetries be preserved in a difference scheme usually still leaves some
freedom in the scheme. For one- or two-dimensional symmetry groups standard schemes are
very often among the symmetry preserving ones. Starting from dimension three this is usually
not the case. In particular, all examples treated in this paper are such that standard schemes
violate the symmetries.

We find the presented numerical experiments extremely encouraging. Future plans include
an investigation of higher order ODEs and of systems of nonlinear ODEs from the point of view
of symmetry preserving discretizations. Also under study is the question of further optimizing
the symmetry preserving schemes and further increasing their accuracy by exploiting the
remaining freedom in the choice of lattices. The behaviour of solutions with singularities will
be further studied. Finally, we are investigating the numerical implications of using symmetry
preserving discretizations of partial differential equations [1, 12–15].
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